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OBJECTIVES TODAY
Provide a broad overview of 
exercise as it relates to the 
pathophysiology of type 2 diabetes

• Identify the effect of high intensity 
exercise on endocrine function in 
type 2 diabetes

• Describe a skeletal muscle 
contraction model and its use to 
interrogate insulin resistance

• Examine skeletal muscle 
mitochondrial dynamics and its role 
in insulin resistance
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Diabetes Mellitus Prevalence
Type 2 Diabetes (T2D) >90%

1980 - 108 million (4.7%) – Global

2014 – 422 million (8.5%) – Global

USA 2017 - 30.3 million (9.4%)
(WHO 2014, CDC 2017)

(CDC’s Division of Diabetes Translation, National Diabetes Surveillance System)



Apollinaire Bouchardat
(1809 – 1886)

“You shall earn your bread 
by the sweat of your 

brow.”

(Kirwan et al., 2017)



Abnormal
glucose tolerance

Hyperinsulinemia,
then b-cell failure

Healthy                  IGT                   Type 2 diabetes 

Post-
prandial 
glucose

Insulin
Sensitivity

Increased 
insulin
resistance

Fasting 
glucose Hyperglycemia

Insulin
secretion

*IGT = impaired glucose tolerance

β-Cell Dysfunction

Adapted from Type 2 Diabetes BASICS. International Diabetes Center (IDC), Minneapolis, 2000. 

>126 mg/dL
(7 mmol/L)

>200 mg/dL
(7 mmol/L)

2hr OGTT

*OGTT = Oral Glucose Tolerance Test (75 gram)

Pathophyisology of Type 2 Diabetes



Exercise Acutely Improves Insulin Sensitivity

Figure 1. Study design. Figure 2. Changes in (A) insulin sensitivity and (B) fatty acid 
uptake after exercise at 50% (EX50) and 65% (EX65) of VO2MAX.  





*

Delineating Factor: Residual β-Cell Capacity

Aerobic Exercise (5 days/week)
◦ “lack of time” – Korkiakangas et al., 2011

High Intensity Training (HIT)



CrossFit® training
◦ Functional High Intensity Training (F-HIT)
◦ Constantly varied workouts (8-20 minutes)
◦ Structured, Accountability, Personal Trainer
◦ Introductory program: 3 days/week for 6 weeks
◦ Great Lakes CrossFit Gym (Bedford, Ohio)



Insulin Secretion on the Background of Insulin Sensitivity

β-Cell Function = Insulin Secretion x Insulin Sensitivity
◦ Disposition Index

Oral Glucose Tolerance Test (OGTT)

How to measure β-cell function?
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PRE POST

6 weeks, 3 days/week

Study Participants Recruited:
• Adults Diagnosed with Type 2 Diabetes

• (non-insulin dependent)
• Sedentary, Weight Stable

Body Composition (DXA)
Oral Glucose Tolerance Test

Performance and VO2max

Body Composition (DXA)
Oral Glucose Tolerance Test

Performance and VO2max

Blood Analysis
Glucose, Pancreatic Hormones
Liver Enzymes, Gut Hormones



CrossFit Training Results
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P-value
Glucose Tolerance

Glucose tAUC (0-180min), g/dL*min 33.6 ± 2.2 44.2 ± 4.1 0.05*
β-Cell Secretory Capacity

C-peptide tAUC (0-180min), 
ng/mL*min 792 ± 54 551 ± 74 0.03*
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F-HIT Increases β-cell function in adults 
with T2D*

Improvements are driven by increased insulin secretion, not sensitivity

Improvements in function correlate with reduced Abdominal Fat and ALP

*Responders vs. Non-responders
◦ Severity of Diabetes

Limitations
◦ Molecular Mechanisms
◦ Isolate the function of exercise alone



Exercise in a Petri Dish Model
Muscle cells

◦ C2C12 myocytes
◦ Differentiation

Electrical Pulse Stimulation (EPS)
◦ Electrodes (Platinum) à Electrical Field
◦ Electrophoresis

◦ Polarity switching



Electrical Pulse Stimulation of C2C12 Myotubes





    

  

Figure 1. Quantification of reductions in in vitro C2C12 myotube contractility with 

ammonium acetate. (A) Directional 2D optical flow map of pixel movement from a single 

contraction over 10 frames with no contraction control (B). Direction of and intensity of 

pixel movement is represented by the color wheel insert(C). Spot noise map depicting 

total pixel movement for each point over 10 frames with a single contraction and no 

contraction control (D). (E) Average spotnoise histogram density for each myotube (n=4) 

relative to no contraction control. (F) Average spot noise histogram density (n=10) of 

control myotubes (circle) or 10mM ammonium acetate incubated myotubes (square). (*) 

P <0.01. 
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Figure 1. Quantification of reductions in in vitro C2C12 myotube contractility with 

ammonium acetate. (A) Directional 2D optical flow map of pixel movement from a single 

contraction over 10 frames with no contraction control (B). Direction of and intensity of 

pixel movement is represented by the color wheel insert(C). Spot noise map depicting 

total pixel movement for each point over 10 frames with a single contraction and no 

contraction control (D). (E) Average spotnoise histogram density for each myotube (n=4) 

relative to no contraction control. (F) Average spot noise histogram density (n=10) of 

control myotubes (circle) or 10mM ammonium acetate incubated myotubes (square). (*) 

P <0.01. 
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Experimental Design



How Does Insulin Regulate Glucose Uptake
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pan-PI3Ka-IP Activity
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Contraction Model Validation

Conclusions

Model is validated by a known phenomenon

Contraction alone can provide protection against lipid-induced 
insulin resistance

Protective mechanism is evident within the canonical insulin 
signaling pathway

Non-canonical activation of PI3K may also mediate protective 
effect



What is Mitochondrial Dynamics?

Figure 1. Treatment with PA induces mitochondrial 
fragmentation in C2C12 cells. Jheng et al. (2011)



Mitochondrial Dynamics: A Primer

Obtained from Dom et al. (2015). The Mitochondrial Dynamism-Mitophagy-Cell 
Death Interactome. Circulation Research, 116: 167-182.  

Mitochondrial Fission:
DRP1 (Cystosol)

MFF (OMM)
Mid49 (OMM)
Mid51 (OMM)

Mitochondrial Fusion:
MFN1 (OMM)
MFN2 (OMM)
OPA1 (IMM)

Mitophagy:
PINK1 (Cytosol/OMM/IMM)

Parkin (OMM)



Mitochondrial Dynamics and Metabolic Disease

Fusion

Fission

Normal

Fusion Fission

Cardiometabolic; Neurological; 
Pulmonary; Alzheimer's 

Fusion
Fission

Starvation; Exercise

Homeostasis Supply>DemandDemand>Supply

Nutrient Status of the Cell



Mitochondrial Fission and 
Insulin Resistance

Nutrient oversupply leads to:
◦ Opening of the permeability transition pore (mPTP)

◦ Inhibits insulin-stimulated glucose uptake

◦ Loss of mitochondrial membrane potential (Δψm)
◦ Fragmentation of the mitochondrial network
◦ Loss of mitochondrial function

◦ Impaired O2 consumption rates
◦ Uncoupled respiration
◦ Slowed ATP synthesis

Hyperinsulinemia results in order to accommodate inadequate energy production

With continual overload on the mitochondria, insulin action worsens



Exercise as Molecular Medicine
Aerobic exercise leads to number adaptations in the mitochondria

◦ Number (mtDNA copies, biogenesis) 
◦ Size (network & individual mitochondrion)
◦ Density (product of size and number)
◦ Function (ATP synthesis, Respiratory chain, 

ROS scavenging) 

The effect of exercise training on 
mitochondrial dynamics 

is currently unknown



Does exercise training restore mitochondrial 
dynamics in insulin resistant individuals?

Hypothesis 1:

Exercise training will alter the mitochondrial 
phenotype such that there will be enhanced 
fusion and reduced fission

Hypothesis 2:

Metabolic improvements from exercise training 
related to changes in mitochondrial dynamics. 



Study Design

12 Weeks Treadmill Walking/Jogging @ 85% HRMAX

5X/weekly
Clamp Study
Muscle Biopsies
Indirect Calorimetry
VO2MAX Testing
DEXA Scan

* *
Clamp Study
Muscle Biopsy
Indirect Calorimetry
VO2MAX Testing
DEXA Scan

Week 0 Week 12



Hyperinsulinemic-Euglycemic Clamp Study



Exercise Training Improves Metabolic Phenotype
Table 1. Changes in subject characteristics after 12 weeks of exercise training 

Characteristic M SD p-value 
(2-tailed) 

Age (yrs) 66.3 4.8 - 

∆ Weight (kg) -13.20 3.7 <0.001 

∆ BMI (kg/m2) -4.23 1.3 <0.001 

∆ Body Fat % -6.80 3.4 0.001 

∆ VO2MAX (ml/kg/min) 8.13 3.9 <0.001 

∆ FPG (mg/dL) -4.03 4.3 0.020 

∆ FPI (μU/mL) -2.83 3.4 0.033 

∆ Triglycerides (mg/dL) -57.80 64.6 0.025 

∆ Cholesterol (mg/dL) -35.30 25.6 0.003 

∆ HDL (mg/dL) 2.00 5.8 0.329 

∆ VLDL (mg/dL) -11.70 12.2 0.019 

∆ LDL (mg/dL) -25.60 21.6 0.006 

∆ GDR (mg/kg/min) 2.32 1.2 <0.001 

∆ NOGD (mg/kg/min) 2.05 1.1 <0.0001 

∆ HOMA -0.80 0.8 0.019 

% ∆ M/I 1.24 0.9 <0.001 
	1	



• Reductions in Drp1 phosphorylation 
in association with improved insulin 
resistance and fat oxidation supports 
the hypothesis that Drp1 mediated 
mitochondrial fission may link 
mitochondrial function with insulin 
sensitivity

Exercise training restores Mitochondrial Dynamics in 
Insulin Resistant Individuals

Fealy et al. (2014)
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Exercise Training Improves Mitochondrial Dynamics



Mitochondrial Dynamics & Insulin 
Sensitivity
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Exercise Energetics and Type 2 Diabetes: Possible Mechanism

↑↑↑ Mitochondrial Function & Content

(Supply ≤ Demand)

↑ Oxidative Capacity
↑ Glycolytic Activity
↑ Metabolic Flexibility

ROS DAG
Ceramides

Insulin
Glucose

GLUT4

GLUT4 
translocation

Acyl-CoAs
Acylcarnitines

Fusion Fission

OPA1
MFN1
MFN2

DRP1
FIS1
PARKIN

Stable Mitochondrial Network
Intact Membrane Fusion



Implications
Targeting of novel proteins and pathways regulating glucose metabolism

◦ Development of pharmacologic interventions
◦ Development of therapeutic treatments
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